Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract BackgroundIn prehospital emergency care, providers face significant challenges in making informed decisions due to factors such as limited cognitive support, high-stress environments, and lack of experience with certain patient conditions. Effective Clinical Decision Support Systems (CDSS) have great potential to alleviate these challenges. However, such systems have not yet been widely adopted in real-world practice and have been found to cause workflow disruptions and usability issues. Therefore, it is critical to investigate how to design CDSS that meet the needs of prehospital providers while accounting for the unique characteristics of prehospital workflows. MethodsWe conducted semi-structured interviews with 20 prehospital providers recruited from four Emergency Medical Services (EMS) agencies in an urban area in the northeastern U.S. The interviews focused on the decision-making challenges faced by prehospital providers, their technological needs for decision support, and key considerations for the design and implementation of a CDSS that can seamlessly integrate into prehospital care workflows. The data were analyzed using content analysis to identify common themes. ResultsOur qualitative study identified several challenges in prehospital decision-making, including limited access to diagnostic tools, insufficient experience with certain critical patient conditions, and a lack of cognitive support. Participants highlighted several desired features to make CDSS more effective in the dynamic, hands-busy, and cognitively demanding prehospital context, such as automatic prompts for possible patient conditions and treatment options, alerts for critical patient safety events, AI-powered medication identification, and easy retrieval of protocols using hands-free methods (e.g., voice commands). Key considerations for successful CDSS adoption included balancing the frequency and urgency of alerts to reduce alarm fatigue and workflow disruptions, facilitating real-time data collection and documentation to enable decision generation, and ensuring trust and accountability while preventing over-reliance when using CDSS. ConclusionThis study provides empirical insights into the challenges and user needs in prehospital decision-making and offers practical and system design implications for addressing these issues.more » « less
- 
            Background Over the past 2 decades, various desktop and mobile telemedicine systems have been developed to support communication and care coordination among distributed medical teams. However, in the hands-busy care environment, such technologies could become cumbersome because they require medical professionals to manually operate them. Smart glasses have been gaining momentum because of their advantages in enabling hands-free operation and see-what-I-see video-based consultation. Previous research has tested this novel technology in different health care settings. Objective The aim of this study was to review how smart glasses were designed, used, and evaluated as a telemedicine tool to support distributed care coordination and communication, as well as highlight the potential benefits and limitations regarding medical professionals’ use of smart glasses in practice. Methods We conducted a literature search in 6 databases that cover research within both health care and computer science domains. We used the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) methodology to review articles. A total of 5865 articles were retrieved and screened by 3 researchers, with 21 (0.36%) articles included for in-depth analysis. Results All of the reviewed articles (21/21, 100%) used off-the-shelf smart glass device and videoconferencing software, which had a high level of technology readiness for real-world use and deployment in care settings. The common system features used and evaluated in these studies included video and audio streaming, annotation, augmented reality, and hands-free interactions. These studies focused on evaluating the technical feasibility, effectiveness, and user experience of smart glasses. Although the smart glass technology has demonstrated numerous benefits and high levels of user acceptance, the reviewed studies noted a variety of barriers to successful adoption of this novel technology in actual care settings, including technical limitations, human factors and ergonomics, privacy and security issues, and organizational challenges. Conclusions User-centered system design, improved hardware performance, and software reliability are needed to realize the potential of smart glasses. More research is needed to examine and evaluate medical professionals’ needs, preferences, and perceptions, as well as elucidate how smart glasses affect the clinical workflow in complex care environments. Our findings inform the design, implementation, and evaluation of smart glasses that will improve organizational and patient outcomes.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
